

VISUALIZING CHANGE

Diverse as they may seem, polymers, gels, liquid crystals, sand, and living cells all form part of one fascinating field soft condensed matter, a recent interdisciplinary arrival at the cutting edge of scientific exploration spanning physics, chemical engineering, mechanical engineering, biophysics, and food science. And what might be the link between such materials? Many are disordered or partially disordered and viscoelastic rigid like a solid over a short period of time and flow like a liquid over a long period of time. Now, researchers at HKUST are delivering fresh insights to phase transitions - when a material transitions from one form to another - while an innovative HKUST methodology, under development, is helping scientists probe further into the properties of living cells.

UNFOLDING THE MYSTERIES OF MATTER

Phase Transition Dynamics
Have you ever looked at an ice cube and wondered how it melted? From the outside, or inside, or a bit of both? Or how to diamond, both made of pure carbon but vastly different in their appearances and properties? If you have, you are considering one of the fundamental questions of physics -
how matter changes from one state to another.
These questions have piqued the curiosity of soft condensed matter physicist Prof Yilong Han and his team for the past decade, with their findings attracting the attention of physicists globally. In particular, Prof Han has been intrigued by: when transition occurs; how the embryo of the new phase is formed from the parent phase; and what the microscopic kinetic pathway of a phase transition might be. Such phenomena are "spectacularly difficult" to study, Prof Han said, because it is hard to even observe individual atoms and molecules buried inside a bulk solid or liquid, let alone track their trajectories.
"These phase transitions exist widely in nature and are important in daily life and applications. They are usually first-order transitions, which lack a theory at the fundamental level," he said. The transition of carbon
organized as soft black coal to crystal clear diamond is organized as soft black coal to crystal one example.

Micrometer-sized colloidal particles dispersed in liquids can mimic large
atoms and serve as powerfur model systems for studying phase transitio They have the dual advantage of being large enough to be de directly observed. under an optical microscope, but small enough to possess strong Brownian
motion to form crystal liquid, gas, and glassy phases. From the trajectories of particles, various physical quantitites can be calculated. . enabling quantititative

Solid-to-Solid
It is common for the same type of atoms to form several different crystal structures. Under specific temperature and pressure regimes, these structures can undergo phase transitions from one solid state to another. Such transitions are widely observed in metallurgy and in the earth's mantle, altering mineral properties through structural changes. While the different phases of solids have been known to exist for a long time, their kinetic pathways and the mechanisms by which they transition from one phase to another are an ongoing area of study.

Using novel diametertunable colloidal microspheres provided by project collaborator Prof Arjun Yodh and his group at the University of Pennsylvania, the HKUST team was able to drive phase transitions by "tuning" the particle size - that is, to tune the density or effective temperature of the system. Furthermore, the micrometerspherical gel particles could even be visualized inside the bulk of a crystal. Thus, by beaming a heating light into the colloidal crystal, causing the contraction of microspheres, it then becomes possible to directly observe, for the first time, homogenous nucleation in solid-solid transition.

Surprisingly, the researchers found the crystal did not directly form nuclei of the final lattice structure, as conventionally expected, but liquid nuclei, which grew larger and larger, and then crystallized into the final lattice. Such a two-step nucleation process is caused by a lower liquidcrystal interfacial energy, in compani interfacial energy," Prof Han explained

The novel transition pathway identified by Prof Han and his collaborators was later confirmed in metals by another research group, lending credence to colloidal systems as an apt methodology for modeling phase transitions of atomic systems. The resung paper on sold sold 14,1012015
appearef '
liquid state disappears when a small amount of pressurate liquid state disappears when a small amount of pressure is defects called discation which osillated and trizered a few more pairs, and produce a nucleus win final

66
No one could visualize how a perfect crystal transforms into another crystal at the single-particle level in bulk before. We were the first to see the transient liquid state during such transition

PROF YILONG HAN
triangular lattice. Then, the nuclei grew by random diffusion of nearby particles. Such early-stage collective motions of particles (martensitic transformation) and the later-stage diffusive nucleation represent a novel type of transition pathway. This result and other pathways were published in Nature Communications, 8, 14978, 2017).

A defect--ree crystal (square lattice) transtorms to a new phase ltriangula latticel hrough the generation of nuclei with equal probability in space,
otherwise known as homogenous nucleation. By directly observing the homogenous nucleation processs. the eresearch team found that the crystal
does not transform to the final lattice structure as conventionally expecte does not ranstorm to the tinal altice structure as conventionaly expected,
but forms intermediate liquid nuclei that first grow and then crystallize into
the final lattice structure in a two-step nucleation process.

Solid-to-Liquid

Prof Han's group has also used colloids as model systems to study crystal melting or solid-to-liquid phase tranition, achieving the first microscopic observations of surface premelting and internal homogenous melting.

Pre-melting

The surface of a solid often melts into a thin layer of liquid below the melting point, a phenomenon known as pre-melting, For example, two pieces of ice can fuse together below $0^{\circ} \mathrm{C}$ because pre-melted surface water freezes into ice at the contact point, when not on the surface. By adding novel attractive forces between colloidal spheres, Prof Han's group was able to study pre-melting and other surface behaviors. They revealed that dimensionality is important for pre-melting, as monolaye and bilayer crystals can have distinct pre-melting behaviors This work was published in Nature, 531, 485, 2016. Surface pre-melting is important in skating, glacial movement, and snowflake formation.

Melting from Within

Prof Han's group also realized melting from within a defectfree crystal. In doing so, they found the transition process was initiated via particle swapping, where several adjacent particles switched places in a looping motion before baby

THE PHYSICS OF LIVING MATTER

liquid nuclei were formed. This contrasted with normal melting, triggered by the formation of crystalline defects. The findings appeared in Science, 338, 87, 2012.

Liquid-to-Glass

In contrast to the well-understood crystal, disordered glass is poorly comprehended, with the nature of glass transition ranked as one of the 125 major scientific open questions by Science. Take, for example, a supercooled liquid frozen to a glass. While its structure hardly alters, why does its dynamics slow down about 10-15 times (viscosity increases by 10-15 times)? Are there litte-known structural changes responsible for this? Seeking the correlation between structure and dynamics is a major area of endeavor in the search for greater knowledge of glass.

Fast-moving particles are Fast-moving particles are
shown in color, demonstrating
dynamic heterogeneity / non-

Prof Han's group got off to an early start on this, performing the first experiment on colloidal glass composed of non-spherical particles and discovering a novel glass motion jams into the glass first and whereby rotational jams into the glass afterward, increasing the density (Phys. Rev Lett 107, 065702, 2011) In addition they found vario Rev. Let. 107, 065702, 2011). In adation, hey found variou true 2014) - (329, 2014).
Prof Han's group produced colloidal glass by vapor deposition, and explored glass behaviors near the glass-vapor
interface with single-particle dynamics for the first time They interface with single-particle dynamics for the first time. They resolved curface reflecting two surface layers (Nature near the surface, reflecting two surface layers (Nature
Communications $8,362,2017$).

Crystal-to-Glass

Most crystals, such as metals, are polycrystals composed of billions of randomly-oriented crystalline grains. Each grain is a small single crystal, made up of billions of atoms or molecules on a periodic lattice. If the typical grain size is reduced to just a few atoms, the polycrystal will become an amorphous solid, i.e. glass. How, then, would one distinguish ultrafine-grained polycrystals from glass? Is it just a matter of terminology? Surprisingly, these questions have rarely been asked.
Prof Han's and his group ventured into unexplored scientific territory by being the first to answer this basic question - ultrafine-grained polycrystals are notoriously difficult to fabricate due to their instability, and as a result, have rarely been studied. They compressed crystals into polycrstyals, and further into glass, using simple models by simulations. Their findings revealed that there is, indeed, a point of differentiation between fine-grained polycrystals and glass - at a surprisingly large grain diameter of around 15 particles. Many physical quantities feature a signature
sharp polycrystal-glass transition at sharp polycrystal-glass transition at this size, as opposed to a continuous crossover. These behaviors were shown to be robust in different models in 2D and 3D. It also provides a novel angle to study glass formation from a crystal, instead of the conventional and wellstudied process of forming glass by quenching a supercooled liquid. This work was published in Physical Review
 8, 041023, 2018
Prof Han, who joined HKUST in 2007 after completing his doctorate and post-doctoral research at the University of Chicago and University of Pennsylvania respectively, has been in Mainland Che He of phe sive and foremost out Hef in to is providing insigh which assist in that is prow further exciting order of magnitude to the matter.

Prof Han received the International Organization of Chinese Physicists and Astronomers Achievement in Asia (2016) (2014) and the Chinese Young Scientist Award phase transitions.

DNA, proteins, lipids, as well as living cells and tissues, are other forms of soft matter. Understanding the mechanics and physical properties of these squishy materials adds further insights into the physics of living matter.

However, living cells are not only delicate, but their Jello-like consistency also poses a major challenge for researchers. Touch the cell with a probe and an adhesive force is generated, due to the cell's "stickiness", leading to inaccurate measurements. A cell's elasticity is also not constant (imagine trying to measure the "hardness" of a drop of liquid). Innovation is, therefore, a must to find methods to map cellular properties without either destroying the cell or making contact with it.

This is the quest of experimental physicist Prof Penger Tong, who works at the interdisciplinary interface between physics, biology, and chemistry. Prof Tong and his collaborators have set out to overcome both of these difficulties by developing a novel way to measure viscoelasticity and other mechanical properties of living cells, by engineering a new type of atomic force microscope (AFM) probe that operates in air rather than liquid.

To create the probe, they glued a tiny glass fiber needle approximately one micrometer in diameter and 100 micrometers in length - to an AFM cantilever. The needle was covered with a special coating that prevented proteins
from sticking to the probe. Then, with the needle tip placed

66
want to understand the mechanical properties of cells and the physics of living matter PROF PENGER TONG
ew nanometers above the cell surface, the tool was pressed to the living cell, creating a contactless method of measuring mechanical properties of a cell while allowing its integrity and activities to remain undisturbed. "Everything is in the air except the tip," cell's surface, Prof Tong explained

The team worked experimentally on refining the accuracy of the device, alongside working out the hydrodynamic theory erde for flis physicist Prof Alpes in France.
 interface of life and death.

The hard thing in biology is you have large cell-to-cell variations," Prof Tong noted. "But, that is what life is," he added. "Cellular diversity is tremendous, between different types of cells and within the same kind of cells, even though they are made of similar molecular building blocks." Prof Tong and his team remain undaunted by the demanding task of systematically quantifying and theorizing these many variations. Indeed, in advancing their biological physics research, they hope to uncover the mechanobiological differences between healthy and cancerous cells. They would also like to explore the differences between living and dead cells, an endeavor that would take them to a truly amazing frontier of science - th

Prof Tong is Head and Chair Professor of the Department of Physics and a Fellow of the American Physical Society
_

Elasticity of a Dividing HeLa Cell

A long needle AFM probe is lowered toward and set for vibraction in in wo trequencies to
measure the cell's height and measure the cell's height and mechanica
response, respectively. Water flowing response, respectively. Water flowing
between the needle tip and cell surface
cannot keep up with the fast vibrations cannot keep up with the fast vibrations,
creating a drum-like effect that cuases cell
deformation. Measuring the force required to creating a drum--ike effect that causes cell
deformation. Measuring the force required to
deform the cell surface, locally, provides the deform the cell surface, locally, provides the
elasticity map. Yellow/red/blue show areas elasticity map. Yellow/red/blue show areas
of high/medium/low stifness, respectively
IReprinted with permiscion of high/medium/low stififness, respectively
(Reprinted with permission from Guan et
Phys. Rev. Appplied, 8, 044010,2017).

Using the newly-engineered AFM probe, they measured the mechanical properties of HeLa cells, epithelial cysts, neurons, and postsynaptic density droplets in collaboration with HKUST's Division of Life Science faculty, including Prof Robert Qi, Prof Pingbo Huang, and Prof Mingjie Zhang Comparisons were made to assess whether the cells had distinct functions, or were healthy or diseased, providing new knowledge related to the roles played by the cell's volumetric and elastic properties.

